Upper and Lower Ramsey Bounds in Bounded Arithmetic (appears in Annals of Pure and Applied Logic, Sept 2005)

نویسنده

  • Kerry Ojakian
چکیده

Pudlák shows that bounded arithmetic (Buss’ S2) proves an upper bound on the Ramsey number Rr(k) (the r refers to the number of colors, assigned to edges; the k refers to the size of the monochromatic set). We will strengthen this result by improving the bound. We also investigate lower bounds, obtaining a non-constructive lower bound for the special case of 2 colors (i.e. r = 2), by formalizing a use of the probabilistic method. A constructive lower bound is worked out for the case when the monochromatic set size is fixed to 3 (i.e. k = 3). The constructive lower bound is used to prove two “reversals.” To explain this idea we note that the Ramsey upper bound proof for k = 3 (when the upper bound is explicitly mentioned) uses the weak pigeonhole principle (WPHP) in a significant way. The Ramsey upper bound proof for the case in which the upper bound is not explicitly mentioned, uses the totality of the exponentiation function (Exp) in a significant way. It turns out that the Ramsey upper bounds actually imply the respective principles (WPHP and Exp) used to prove them, indicating that these principles were in some sense necessary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper and lower Ramsey bounds in bounded arithmetic

Pudlák shows that bounded arithmetic (Buss’ S2) proves an upper bound on the Ramsey number Rr(k) (the r refers to the number of colors, assigned to edges; the k refers to the size of the monochromatic set). We will strengthen this result by improving the bound. We also investigate lower bounds, obtaining a non-constructive lower bound for the special case of 2 colors (i.e. r = 2), by formalizin...

متن کامل

On the Provability Logic of Bounded Arithmetic

Berarducci, A. and R. Verbrugge, On the provability logic of bounded arithmetic, Annals of Pure and Applied Logic 61 (1993) 75-93. Let PLQ be the provability logic of IA, + G?,. We prove some containments of the form L c_ PLQc Th(V) where L is the provability logic of PA and V is a suitable class of Kripke frames.

متن کامل

On the total version of geometric-arithmetic index

The total version of geometric–arithmetic index of graphs is introduced based on the endvertex degrees of edges of their total graphs. In this paper, beside of computing the total GA index for some graphs, its some properties especially lower and upper bounds are obtained.

متن کامل

An Extension to Imprecise Data Envelopment Analysis

The standard data envelopment analysis (DEA) method assumes that the values for inputs and outputs are exact. While DEA assumes exact data, the existing imprecise DEA (IDEA) assumes that the values for some inputs and outputs are only known to lie within bounded intervals, and other data are known only up to an order. In many real applications of DEA, there are cases in which some of the input ...

متن کامل

On Second Geometric-Arithmetic Index of Graphs

The concept of geometric-arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric-arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus-Gaddum-type results for GA2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006